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Abstract. Enterprises routinely collect terabytes of security relevant
data, e.g., network logs and application logs, for several reasons such as
cheaper storage, forensic analysis, and regulatory compliance. Analyzing
these big data sets to identify actionable security information and hence
to improve enterprise security, however, is a relatively unexplored area. In
this paper, we introduce a system to detect malicious domains accessed
by an enterprise’s hosts from the enterprise’s HTTP proxy logs. Specif-
ically, we model the detection problem as a graph inference problem-
we construct a host-domain graph from proxy logs, seed the graph with
minimal ground truth information, and then use belief propagation to
estimate the marginal probability of a domain being malicious. Our ex-
periments on data collected at a global enterprise show that our ap-
proach scales well, achieves high detection rates with low false positive
rates, and identifies previously unknown malicious domains when com-
pared with state-of-the-art systems. Since malware infections inside an
enterprise spread primarily via malware domain accesses, our approach
can be used to detect and prevent malware infections.

Keywords: belief propagation, big data analysis for security, graph in-
ference, malicious domain detection.

1 Introduction

This is the age of big data. Organizations collect and analyze large datasets
about their operations to find otherwise difficult or impossible to obtain infor-
mation and insight. Big data analysis has had an impact on online advertising,
recommender systems, search engines, and social networks in the last decade,
and has the potential to impact education, health care, scientific research, and
transportation [1]. Big data analysis for security, i.e., the collection, storage, and
analysis of large data sets to extract actionable security information, however,
is a relatively unexplored area.

Organizations, especially business enterprises, collect and store event logs gen-
erated by hardware devices and software applications in their networks. For ex-
ample, firewalls log information about suspicious network traffic; and hypertext
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transfer protocol (HTTP) proxy servers log websites (or domains) accessed by
hosts in an enterprise. Enterprises collect and store event logs primarily for two
reasons: need for regulatory compliance and post-hoc forensic analysis to detect
security breaches. Also, availability of cheap storage has facilitated large scale
log collection. Such logs generated by both security products and non-security
infrastructure elements are a treasure trove of security information. For example,
if hosts in an enterprise network are infected with bots, then the bots may con-
tact their command and control (C&C) server over domain name system (DNS)
and may exfiltrate sensitive data over HTTP. Hence both DNS logs and HTTP
proxy logs will contain information about bot activities. Developing scalable
and accurate techniques for detecting threats from logs, however, is a difficult
problem [2]; we review related work in Section 5. In this paper, we introduce a
big data analysis approach to detect malicious domains accessed by hosts in an
enterprise from the enterprise’s event logs.

1.1 Malicious Domain Detection

Malware infections spread via many vectors such as drive-by downloads, remov-
able drives, and social engineering. Malicious domain access, however, account
for majority of host infections [3]. Malware installed on hosts may be involved
in pilfering sensitive data, spreading infections, DDoS attacks, and spamming.
Legal issues and loss of intellectual property, money, and reputation due to mal-
ware activities make security a pressing issue for enterprises. Hence to contain
malware, enterprises must prevent their hosts from accessing malicious domains.

Reliable and scalable detection of malicious domains, however, is challenging.
Many enterprises use both commercial and freely available domain blacklists,
i.e., list of known malicious domains, to detect and prevent malicious domain
access; such lists, however, incur a significant delay in adding new domains as
they rely on many manual and automated sources. Moreover, the techniques
used to generate the lists are resource intensive. For example, malicious domain
inference using DNS and network properties such as a domain’s IP addresses
and BGP prefixes requires data collection from sources with specialized van-
tage points. Similarly, machine learning techniques, e.g., analyzing a domain’s
lexical features, or a related IP address’s structural properties, requires large
feature data sets and accurately labeled training sets; hence these techniques
are computationally expensive and may suffer from increased delay in detection.

In this paper, we present a scalable malicious domain detection approach that
uses event logs routinely collected by enterprises and requires no additional data
collection, and uses minimal training data. We model the detection problem as
an inference problem on very large graphs. Our graph inference approach utilizes
inherent malware communication structure, e.g., all bots in an enterprise contact
the same command and control server. We first construct a host-domain graph by
adding edges between each host in the enterprise and the domains visited by the
host. We seed the graph with ground truth information about a small fraction
of domains obtained from domain blacklists and whitelists, i.e., we label a small
fraction of domains as malicious and benign, and label the rest of the domains
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as unknown. We then adapt belief propagation to estimate an unknown domain’s
likelihood of being malicious [4,5]; if the likelihood is more than a threshold, we
identify the domain to be malicious. We chose belief propagation because it is a
fast and approximate estimation algorithm that scales well to large graphs, and
also takes structural advantage of malware communication (Please see Section 2
for details).

We applied our approach to 7 months of HTTP proxy data collected at a large
global enterprise. Our results show that with minimal ground truth information,
e.g., with only 1.45% nodes in the graph, we achieve high true positive rates
(TPR) of 95.2%, with low false positive rates (FPR), for 0.68%. A benign node
labeled as malicious by our approach is a false positive (FP) and a correctly
identified malicious node is a true positive (TP). Our approach takes the order
of minutes to analyze a large-sized enterprise’s day long data, and identifies
previously unknown malicious domains.

1.2 Contributions and Roadmap

We make the following contributions in this paper.

– We demonstrate that we can extract actionable security information from
enterprise event logs in a scalable and reliable manner.

– We model the malicious domain detection problem as a graph inference prob-
lem and adapt belief propagation to solve the problem. Our approach does
not require additional data beyond event logs, does not compute features,
and uses minimal data from existing blacklists and whitelists.

– We apply our approach to event logs collected at a global enterprise over 7
months and show that our approach scales well and identifies new malicious
domains not present in the blacklists.

The rest of the paper is organized as follows. We introduce our graph inference
approach in Section 2. We describe our data set and analysis setup in Section 3.
We present and discuss our experimental results in Section 4. We compare our
work with related work in Section 5 and conclude with a discussion of future
work in Section 6.

2 A Graph Inference Approach

In this section, we describe our approach to detect malicious domains. We as-
sume that we have an enterprise’s host-domain graph, i.e., we know the domains
accessed by the enterprise’s hosts. We construct the graph by adding a node
for each host in the enterprise and each domain accessed by the hosts and then
adding edges between a host and its accessed domains. We can construct the
graph from multiple enterprise event log datasets, e.g., HTTP proxy logs and
DNS request logs.

We also assume that we know a few nodes’ states, e.g., malicious or benign.
A domain present in a domain black list or a domain white list is known to be
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Host1 
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malicious.com 

unknown.com 
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Fig. 1. A host-domain graph containing a malicious domain, malicious.com, a benign
domain, benign.com, and an unknown domain, unknown.com

malicious or benign, respectively. Similarly, a malware infected host is known to
be malicious whereas an uninfected host is known to be benign. The known nodes
constitute our ground truth data set; the rest of the graph nodes are unknown
nodes. We note that a small fraction of the graph’s nodes are present in the
ground truth data set. We show an example host-domain graph in Figure 1. The
graph contains a malicious node, malicious.com, a benign node, benign.com, and
three unknown nodes, Host1, Host2, and unknown.com.

Given the host-domain graph and the ground truth information, our goal is
to infer the states of the unknown domains in the graph. For example, in Figure
1, we would like to infer the state of unknown.com. Formally, we would like to
compute a node’s marginal probability of being in a state, i.e., the probability
of the node being in a state given the states of other nodes in the graph. We
will then label the nodes with high marginal probability of being malicious as
malicious nodes and benign otherwise.

In principle, our approach can detect both malicious domains and infected
hosts in the enterprise. For example, in Figure 1, we can infer the states of Host1
and Host2. In this paper, however, we focus on malicious domain detection.

Marginal probability estimation in graphs is known to be NP-complete [5].
Belief propagation (BP), introduced in the next section, is a fast and approximate
technique to estimate marginal probabilities. BP’s time complexity and space
complexity are linear in the number of edges in a graph; hence BP scales well to
large graphs. A typical enterprise host-domain graph has millions of nodes and
tens of millions of edges. Hence we chose BP as our inference technique due to its
scalability and its successful application in diverse fields such as computer vision
[6], error correcting codes [7], fraud detection [8], and malware identification [9].

BP relies on ground truth information and statistical dependencies between
neighboring nodes to reliably estimate marginal probabilities. The dependencies
are derived from our domain knowledge. For example, user activities on benign
hosts result primarily in benign domain accesses and occasional unintended ma-
licious domain accesses, e.g., via phishing. Hence we may assume that benign
hosts are more likely to visit benign domains than malicious domains. Similarly,
a benign domain’s neighbor is more likely to be a benign host than a malicious
host. Malicious hosts may visit benign domains due to user activities; however,
they are more likely to visit malicious domains as malware tend to contact many
malicious domains. Intuitively, Host 1 in Figure 1 is more likely to be malicious
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as it has a malicious neighbor. Similarly, Host 2 is more likely to be benign, and
unknown.com is equally likely to be either.

2.1 Belief Propagation

In this section, we summarize the BP algorithm; please see Yedida et al. for
details [5]. Judea Pearl introduced the BP algorithm for trees [4]. BP is an
efficient technique to solve inference problems on graphical models. Given an
undirected graph, G = (V,E), where V is a set of n nodes and E is a set of
edges, we model every node i ∈ V as a random variable, xi, that can be in
one of a finite set, S, of states. A graphical model defines a joint probability
distribution, P (x1, x2, ..., xn), over G’s nodes. The inference process computes
the marginal probability distribution, P (xi), for each random variable, xi. A
node’s marginal probability is defined in terms of sums of the joint probabil-
ity distribution over all possible states of all other nodes in the graph, i.e.,
P (xi) =

∑

x1

..
∑

xi−1

∑

xi+1

..
∑

xn

P (x1, x2, ..., xn). The number of terms in the sum

is exponential in the number of nodes, n. BP, however, can approximate the
marginal probability distributions of all nodes in time linear in the number of
edges, which is at most O(n2).

BP estimates a node’s marginal probability from prior knowledge about the
graph’s nodes and their statistical dependencies. A node, i’s, belief, bi(xi), is i’s
marginal probability of being in the state xi. bi(xi)’s computation depends on
priors of the graph nodes. A node, i’s, prior, φi(xi), is i’s initial (or prior) prob-
ability of being in the state xi. In our model, a node’s priors indicate the node’s
initial likelihood of being in malicious and benign states. We estimate a node’s
priors using our ground truth information. bi(xi)’s computation also depends on
edge potential functions that model the statistical dependencies among neigh-
boring nodes. The edge potential, ψij(xi, xj), between two neighboring nodes, i
and j, is the probability of i being in the state xi and j being in the state xj .

BP achieves computational efficiency by organizing global marginal probabil-
ity computation in terms of smaller local computations at each node. This is
done via iterative message passing among neighboring nodes. Consider a node,
i, and its neighbors, N(i). In each iteration of the algorithm, i passes a message
vector, mij , to each of its neighbors, j ∈ N(i). Each component, mij(xj), of the
message vector is proportional to i’s perception of j’s likelihood of being in the
state xj . i’s outgoing message vector to its neighbor j depends on i’s incoming
message vectors from its other neighbors and is computed as follows.

mij(xj) =
∑

xi∈S

φi(xi)ψij(xi, xj)
∏

k∈N(i)\j
mki(xi) (1)

The order in which messages are passed is not important as long as all mes-
sages are passed in each iteration. Malware communication, e.g., bots commu-
nicating with C&C servers, provides a structural advantage in using BP as
messages can propagate over multiple hops. In a synchronous update order,
i’s outgoing messages in iteration t is computed from i’s incoming messages in
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iteration t − 1. In an asynchronous update order, incoming messages are used
as soon as they are available. We chose to use a synchronous update order for
its simplicity. The iterations stop when the messages converge within a small
threshold, i.e., messages don’t change significantly between iterations, or when
a threshold number of iterations is reached. We then compute a node, i’s, belief
values from i’s incoming messages in the converged or the last iteration.

bi(xi) = Cφ(xi)
∏

k∈N(i)

mki(xi) (2)

C is a normalization constant to ensure that i’s beliefs add up to 1, i.e.,∑
xi∈S bi(xi) = 1.
In the case of trees, BP always converges and the beliefs represent accurate

marginal probabilities. But if a graph has loops, then belief propagation on the
graph may not converge or may converge to inaccurate marginal probabilities
[10]. In practice, however, belief propagation has been successful on graphs with
loops: it converges quickly to reasonably accurate values [11].

3 HTTP Proxy Data Analysis

In this section, we describe our approach’s application on an enterprise HTTP
proxy data set. An HTTP proxy acts as an intermediary between an enter-
prise’s hosts and the domains accessed by the hosts. Hence we can determine
the domains visited by the hosts from proxy logs and construct an enterprise’s
host-domain graph.

3.1 Data Set and Graph Generation

We collected proxy logs over a 7 month period from August 2013 to February
2014 from 98 proxy servers in a global enterprise’s worldwide locations. Each
entry in the log represents an HTTP request and contains the requesting host’s
IP address, the domain requested, a time stamp, an HTTP header, and the
request status. If we see an HTTP request from an IP address, I, for a domain,
D, then we create two nodes, I and D, in the host-domain graph, and add an
edge between I and D.

We follow standard terminology and note that given a domain, www.hp.com
(or www.hp.co.uk), hp.com (or hp.co.uk) is the second-level domain (2LD) and
com (or co.uk) is the top-level domain (TLD). The TLD is also known as a
public suffix. We use only 2LDs in our graph– collapsing domain nodes in this
manner increases the number of paths in the graph, making paths between nodes
more likely and hence information propagation between nodes more likely. Such
a choice also reflects our assumption that usually 2LDs are responsible for their
domain’s and sub-domains’ security. If a proxy log contains an IP address instead
of a domain name as the destination, we add the IP address as a graph node.

We represent hosts by their IP addresses in our graph. Since IP addresses are
transient in nature, a single host may be represented by multiple graph nodes.
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Table 1. Data and graph description. Each row in the table represents a time period,
and the columns show the time period, the number of events in the time period, the
number of nodes and edges in the graph constructed from the events, the number of
known malicious nodes and benign nodes in the graph, and the number of known nodes
as a percentage of all graph nodes (B = billion, M = million, and K = thousand).

Time Period Events Nodes Edges Malicious Benign Ground truth
Nodes Nodes (%)

01-16-2014 1.29B 2.80M 27.8M 21.6K 19.7K 1.45

01-17-2014 1.19B 2.58M 25.3M 21.5K 19.8K 1.60

01-18-2014 0.40B 0.80M 5.33M 10.8K 9.41K 2.51

01-19-2014 0.36B 0.70M 4.17M 10.7K 9.45K 2.88

01-20-2014 1.02B 2.46M 22.0M 21.4K 19.7K 1.67

01-21-2014 1.26B 2.81M 27.9M 21.6K 19.8K 1.47

01-22-2014 1.00B 2.35M 23.2M 21.3K 19.7K 1.73

1 Week 6.52B 10.5M 85.2M 104K 103K 1.98

3 Hours-1 0.20B 0.78M 6.95M 5.62K 4.66K 1.32

3 Hours-2 0.22B 0.76M 7.27M 5.80K 4.65K 1.38

6 Hours-1 0.31B 1.08M 8.90M 8.76K 7.65K 1.52

6 Hours-2 0.41B 1.21M 12.1M 9.06K 7.59K 1.38

We, however, observe that IP address assignment in enterprise networks is stable
over periods of days and even months.

Table 1 shows the summary of one week’s data collected from January 16th,
2014 to January 22nd, 2014. For each day (column 1), we show the number of log
events (column 2, in billions), and the numbers of nodes (column 3, in millions)
and edges (column 4, in millions) in the graph constructed from the day’s logs.
The 7th row in the table shows the numbers for the graph constructed from the
week’s data. January 18th and 19th were weekend holidays; hence the numbers
of events collected on those days are much less than the numbers on weekdays.

3.2 BP Parameters

We obtained blacklists of known malicious domains and IP addresses from a
commercial blacklist and seventeen freely available lists including OpenBL.org
andmalwaredomains.com projects. Since domain blacklists change frequently, we
obtained blacklists from the same time period as the logs. We use Alexa’s popular
domain list as our whitelist [12], where we chose top K entries to be benign
domains to maintain a balance between malicious and benign domains. Table 1
shows malicious nodes (column 5, in thousands) and benign nodes (column 6,
thousands) in each graph. These nodes represent our ground truth information;
column 7 shows ground truth as a percentage of all graph nodes. Since our focus
was on detecting malicious domains, we did not use any ground truth information
for the host nodes.

We assign priors to graph nodes according to our ground truth data. For
example, we assign a prior, P (malicious) = 0.99, to the nodes present in the
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Table 2. Priors assigned to a node according to the node’s state

Node P(malicious) P(benign)

Malicious 0.99 0.01

Benign 0.01 0.99

Unknown 0.5 0.5

blacklist. We do not assign a probability of 1 to account for possible errors in our
ground truth data. Table 2 shows the prior assignments according to whether
a node is known malicious, known benign, or unknown. We assume that an
unknown node is equally likely to be malicious or benign.

We introduce an edge potential matrix to reflect the statistical dependencies
among neighboring nodes. We assume a homophilic relationship, i.e., two neigh-
boring nodes are more likely to be of the same state than different states. For
example, a malicious host and a malicious domain are more likely to be neigh-
bors than a benign host and a malicious domain. The relationship is based on
our intuition that hosts that visit benign sites are likely to be benign and hosts
that visit malicious sites are likely to be infected. Table 3(a) shows our edge
potential matrix. We explore more parameter choices in Section 4.2.

Table 3. Edge potential matrices

(a)

�����xi

xj
Benign Malicious

Benign 0.51 0.49

Malicious 0.49 0.51

(b)

�����xi

xj
Benign Malicious

Benign 0.75 0.25

Malicious 0.49 0.51

3.3 Experimental Setup

We implemented the BP algorithm in Java and ran our experiments on a 12-
core 2.67 GHz desktop with 96GB of RAM. Since our graph has many high
degree nodes, e.g., degree > 100K, and the incoming messages are less than 1,
multiplying all incoming messages results in underflow, i.e., multiplication results
in 0. We handled underflow in two ways. First, we used Java’s BigDecimal data
type to perform arbitrary precision operations; we, however, pay a performance
penalty. Second, we normalize outgoing message vectors, i.e., we ensure that
a vector’s components add up to 1. For example, instead of sending a vector,
(0.0023, 0.0023), we normalize the vector to (0.5, 0.5). The larger normalized
numbers help avoid underflow.

We constructed our graphs off-line, i.e., we stored the logs in compressed
format on disk and then uncompressed them in memory to create the graphs.
Graph construction from a week day’s compressed data took an average of 5
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hours with peak memory usage of 9GB. In practice, however, graph construction
will be done online: as and when event logs are generated, new nodes and edges
will be added to the graph as needed. Hence at any point in time, the day’s
graph will be up-to-date. If we need to store historical data, we can store the
graphs and not the event logs. A weekday’s graph requires an average of 426MB
of disk space.

The peak memory usage during BP’s iteration phase was 53GB. The aver-
age iteration time was 7.8 minutes on a weekday’s data and 1.25 minutes on a
weekend day’s data. The BigDecimal data type’s use was a major contributor
to iteration time and memory usage.

We used message damping to speed up convergence [13]. If mt−1
ij is the out-

going message from a node, i, to its neighbor, j, in t − 1th iteration, then the
outgoing message in the tth iteration is mt

ij = αmt−1
ij + (1 − α)m̄t

ij , where m̄
t
ij

is the outgoing message in the tth iteration as computed by Equation 1 and α is
a damping factor in the range [0,1]. We experimented with a range of values for
α and empirically determined that α = 0.7 produces the best performance.

We ran each experiment till either BP converged or 15 iterations were com-
pleted. We then computed the belief values as defined in Equation 2.

3.4 Result Computation

Following standard practice, we use K-fold cross validation to compute our ma-
licious domain detection performance, i.e., we divide the ground truth data into
K folds, mark one fold as test data and the remaining K-1 folds as training data.
We seed the host-domain graph with the training data, reset the priors of the
nodes in the test data to unknown priors, run belief propagation, and then com-
pute beliefs following the procedure described in the previous subsections. We
then compute our detection performance on the test fold. We repeat the process
for each of the K folds and report our average performance over the K folds. We
describe the process of selecting K in the next section.

We present our malicious domain detection results as Receiver Operating
Characteristics (ROC) plots, i.e., plots showing false positive rates and true pos-
itive rates. Since low FPRs are essential in enterprise settings, we chose ROC
plots instead of overall classification accuracy. We obtain an ROC plot by thresh-
olding a node’s malicious belief value. For example, given a threshold, t, if a node,
n’s, malicious belief, bn(malicious) > t, then we predict n as malicious; else, n
is benign. We then use n’s ground truth state and predicted state to label n as
false positive, true positive, false negative, or true negative. For example, given
a malicious node, n, in ground truth, if we predict n as malicious, then n is
a true positive; else n is a false negative. Similarly, given a benign node, n, in
ground truth, if we predict n as benign, then n is a true negative; else n is a false
positive. We then repeat the process for all nodes in the test fold to compute the
FPR and the TPR at threshold t. We then vary t uniformly in the range [0,1]
to obtain an ROC plot. Network administrators can pick an operating point on
the plot according to their risk profiles. For example, they may choose a high
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threshold to reduce FPs or a low threshold to increase detection at the risk of
increasing FPs.

4 Results and Discussion

In this section, we first present our experiments on BP’s parameter selection
and then present our malicious domain detection results. We also demonstrate
our ability to detect new malicious domains that are unlikely to be present in
externally sourced blacklists.

4.1 K-Fold Cross Validation

We conducted an experiment to compare our performance under 3 different val-
ues of K: 2, 3, and 10. We constructed a host-domain graph from January 16th’s
event logs, seeded the graph using the day’s blacklist and whitelist, used BP pa-
rameters described in Section 3.2, and then performed K-fold cross validation.
We show the ROC plots in Figure 2. The areas under the ROC curves (AUC)
are 98.53%, 98.72%, and 98.80% for K = 2, 3, and 10, respectively. The higher
the AUC, the better the classification result. Hence, K = 10 produces the best
classification result. Also, 10-fold cross validation is the standard practice in
classification tasks. Hence we use K = 10 in our subsequent experiments.

When K= 10, we use 9/10th of the ground truth data as training data whereas
we use only half the ground truth data as training data when K = 2. Hence the
result confirms our intuition that everything else being equal, more training data
leads to better detection results.

4.2 Parameter Sensitivity Analysis

We conducted parameter sensitivity analysis on January 16th’s graph to study
priors’ and edge potentials’ impact on our results. We experimented with dif-
ferent priors values, e.g., {0.95, 0.05} for malicious nodes, instead of the values
shown in Section 3.2 for known nodes; our performance did not change. We also
assigned priors to unknown nodes according to the nodes’ attributes. For un-
known domains, we assume that popular domains are likely to be benign. Hence
we assign a sigmoid function, 1/(1 + exp(−d)), of an unknown domain node’s
degree, d, as the benign prior. We also assume that malware infected hosts make
large number of HTTP requests, e.g., bots trying to contact their command and
control server. Hence we assign a sigmoid function of an unknown host node’s
HTTP request count as the malicious prior. The sigmoid prior’s ROC plot is
marginally inferior to Figure 2; hence we omit the plot due to space limitation.

We also experimented with the edge potential matrix shown in Table 3(b); we
assume the prevalence of beneficence and assign a lower probability to spread of
malware. Our FPR and TPR does not change from Figure 2. Hence our approach
is robust with respect to our parameter choices and we use the parameters shown
in Section 3.2 for our subsequent experiments.
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Fig. 2. ROC plots for different K-fold cross validations. For clarity, the X-axis ends at
FPR = 25%. K = 10 performs the best.

4.3 Malicious Domain Detection

We present our malicious domain detection results on data collected on 7 consec-
utive days in January 2014. For each day, we constructed a host-domain graph
from the day’s logs, seeded the graph from the day’s whitelist and blacklist, used
parameters described in Section 3.2, and then performed 10-fold cross validation.
We show the ROC plots in Figure 3.

The plots show that our approach can achieve high detection rates with low
false positive rates using minimal ground truth information. For example, on
January 16th, the host-domain graph has only 1.45% nodes in the ground truth
data; yet we achieve a 95.2% TPR with a 0.68% FPR.

The results obtained on weekdays’ data are similar to that of January 16th.
The results on weekends, however, are inferior. For example, on January 18th,
we achieve a 96.7% TPR at a high FPR of 5.6%. The AUC on January 16th is
98.80% compared to 96.12% on January 18th.

The number of events on the weekend days is smaller than the weekdays due
to less activity in the enterprise over the weekend; hence the graphs on weekend
days have fewer edges (Table 1). January 18th’s average domain degree is 8.47
compared to 11.45 on January 16th. Hence the weekend’s graphs do not include
complete node behavior and have fewer paths in the graphs for information
propagation. These two reasons may have caused the inferior performance.
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Fig. 3. ROC plots for 7 days in January 2014. Our approach performs better over
weekdays than weekend days.

4.4 More Event Logs

Given the discussion above, we naturally examined the question of whether more
event logs collected over a time period longer than a day, leads to better per-
formance. Intuitively, we believed that more event logs will capture more com-
plete node behavior. Hence we constructed a single host-domain graph from the
logs collected over the 7 days in January. We also combined the blacklists and
whitelists over the 7 days to a single whitelist and a single blacklist. Figure 4
shows the ROC plot for the graph and the combined whitelist and blacklist. The
results are counterintuitive.

Our performance on 7 days data is inferior to its performance on a single day’s
data. For example, we achieve a TPR of only 90.2% at the FPR of 3.09%. Two
key reasons contribute to the poor performance. First, the combined graph’s
average domain degree is less than those of the graphs constructed from single
days’ data. This is due to the fact that the enterprise’s hosts visited many new
domain nodes every day; these domains were not present in the previous days’
logs. Second, combining the blacklists and whitelists may have introduced errors
in the ground truth information. For example, a domain may have been mali-
cious the first day and might have been cleaned up later. But our approach will
consider the domain as malicious for the entire 7 day period.

Furthermore, the average iteration time on the combined graph was 31.0 min-
utes. Hence we do not recommend our approach over longer time scale data.
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Fig. 4. Our performance on a week’s data is inferior to a single day’s data

4.5 Detection Details

In this section, we examine our false positives and true positives. Most of our
FPs, i.e., benign domains identified as malicious by our approach, are of low
degree. Though these domains are in Alexa’s popular list and are globally pop-
ular, e.g., an Indian matrimonial site, very few hosts in the enterprise access
them. If an administrator blocks access to such domains, they will not impact
business activities. However, blocking access to popular domains such as shop-
ping.hp.com and google.com will be catastrophic. Our approach didn’t commit
any such mistake in our experiments.

We also examine new malicious domains identified by our approach. These are
not present in the blacklist and hence are unknown domains in the host-domain
graph. BP assigns high malicious beliefs to these domains and classifies them as
malicious. We show a few such domains in Table 4.

Table 4. Our approach identifies new malicious domains

luo41cxjsbxfrhtbxfubxaqawhxjshsjx.info
awhvkvkzk17fxa67e51pvp42ozmyiqhvfwp12.info
etn30aqjxf12e61d30hxkxhxgvktmqaqkqdu.info
f32pxntk37gxgxmqn30bzhqpqavovbqgtk67.ru
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These random looking domain names are likely to be algorithmically gener-
ated by malware resident on the enterprise’s hosts. For example, bots typically
generate new domains every day to contact their command and control server.
Externally sourced blacklists are unlikely to contain these domains for three rea-
sons. First, the list generation process may not be aware of the domains; even if
the process had access to malware, the malware may generate different domains
every time it runs. Second, the domains are active for a short time period, e.g., a
few hours, and might not exist by the time they are added to lists. Third, there
are many such domains and adding all of them will increase the list size without
much benefit.

Our results show that we can take advantage of the externally sourced black-
lists and identify previously unknown malicious domains not present in the lists.

4.6 Near Real Time Detection

Our system implementation’s average completion time for 15 iterations on a
day’s data was 115 minutes. Hence, we can construct the host-domain graph
online and run our approach every 115 minutes. In the best case, our approach
can detect a domain 115 minutes after the domain’s first access. This delay might
be unacceptable in some sensitive settings. Hence we experimented with smaller
data sets. We divided January 16th’s data into 3 hours and 6 hours blocks,
constructed a host-domain graph from each block, and then applied BP. Due to
space limitation, we show a few representative graphs in Table 1’s last 4 rows
and ROC plots in Figure 5. Our detection performance on smaller datasets is
marginally inferior to a day’s data. The time gain, however, is compelling. For
example, 15 iterations took 16.6 minutes for completion on 3 hours’ data and
37.5 minutes for 6 hours’ data. Hence in principle, our approach can run every
17 minutes and detect previously unknown domains.

4.7 Seven Months’ Data

Finally, we demonstrate that our detection results over 7 days in January 2014
are not due to extraneous reasons. We randomly chose 7 days from the 7 months,
one day from each month, and applied BP on the host-domain graphs obtained
from each day’s event logs. Figure 6 shows the ROC plots. The plots are similar
to the plots obtained from data collected in the days in January.

5 Related Work

In this section, we compare our work with related work in big data analysis for
security and malicious domain detection. Yen et al. analyze HTTP proxy logs
to identify suspicious host activities– they extract features from the logs and
then use clustering to find outlying suspicious activities [14]. Their approach,
though carried on smaller scale data, is complimentary to ours; they focus on
host activity detection and we focus on malicious domain detection. Giura et al.
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Fig. 5. Few ROC plots for 3 hours’ and 6 hours’ data. The results are marginally
inferior to a day’s data.

Fig. 6. ROC plots for 7 days’ data, one randomly chosen from each of the 7 months,
are similar to Figure 3
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propose an attack pyramid model to identify advanced persistent threats from
network events [15]. Bilge et al. analyze netflow data to identify botnet command
and control servers [16].

Multiple malicious domain detection approaches have been proposed. Yadav
et al. detect fast flux domains from DNS traffic by looking for patterns in al-
gorithmically generated domain names [17]. EXPOSURE [18], Kopis [19], and
Notos [20] use passive DNS analysis to detect malicious domains: they compute
multiple features for domains names, and then perform automated classification
and clustering using training data. For example, Notos uses network features,
zone features, features related to whether domain names were discovered by a
honeypot and whether domain names were present in black lists. EXPOSURE
uses features based on time of DNS queries, answers, time-to-live (TTL) values,
and domain name syntax. Failed DNS queries have also been analyzed to detect
malicious domains. Antonakakis et al. use a combination of clustering and classi-
fication of failed DNS queries to detect malware generated domains names [21].
Jiang et al. construct a DNS failure graph, extract dense subgraphs, and show
that the subgraphs represent anomalous activities such as bots [22]. Yadav et
al. use DNS failures’ temporal and entropy based features to detect C&C servers
[23]. Our work differs from these works in the following aspects: we use event
logs routinely collected by enterprises; we require no additional data collection,
whether passive data, e.g., zone information, or active data, e.g., honeypot in-
teraction data. Also, extensive feature computation may be prohibitive in large
enterprise settings. Hence our approach requires no feature computation and
uses minimal training data.

Multiple malicious URL identification approaches have also been proposed.
Anderson et al. use clustering by graphical similarity to detect spam URLs [24].
Lin et al. introduce a lightweight approach to filter malicious URLs by using lexi-
cal and descriptive features extracted from URL strings [25]. Ma et al. introduce
an URL classification system by using statistical methods to discover lexical and
host-based properties of malicious URLs [26]. Thomas et al. use logistic regres-
sion on extracted features to determine if an URL directs to spam content [27].
Zhang et al. use lexical features and term frequency/inverse document frequency
algorithm to detect phishing URLs [28]. These approaches classify individual
URLs, e.g., maldom.com/url1, as malicious whereas our approach identifies an
entire domain, e.g., maldom.com, as malicious and hence labels all associated
URLs with the domain, e.g., maldom.com/url*, as malicious.

6 Summary and Future Work

In this paper, we introduced a graph inference approach for detecting malicious
domains accessed by an enterprise’s hosts. Our experiments on seven months’ of
HTTP proxy data collected at a global enterprise show that belief propagation
is a reliable and scalable approach and can detect previously unknown malicious
domains. Our work is an example of big data analysis for security, i.e., analyzing
enterprise event data to extract actionable security information. In the future,
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we plan to extend our work to track the spread of malware infections inside
an enterprise network. We also plan to explore big data analysis approaches for
other types of enterprise event logs such as DNS logs and firewall logs.

Acknowledgments. The authors thank Marc Eisenbarth, Stuart Haber, and
A. L. Narasimha Reddy for helpful discussions and feedback at various stages of
the research.
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